Does Adjuvant Chemotherapy for Breast Cancer Cause Cognitive Dysfunction?

Hope S. Rugo, MD Clinical Professor of Medicine Director, Breast Oncology Clinical Trials Program UCSF Comprehensive Cancer Center

Importance of Understanding Cognitive Deficits Due to Cancer Therapy

- A challenge facing cancer survivors as identified by the National Coalition for Cancer Survivorship
- Negative impact on work/school performance and QOL
- Effect on informed decision-making
- Similar pediatric research resulted in treatment modifications that reduced negative cognitive effects while maintaining treatment efficacy
- Functioning of patients with subtle cognitive deficits improves with cognitive rehabilitation approaches

Predictors of Cognitive Deficits

- Type of chemotherapy?
- Education level and IQ
- Depression
- Co-morbid illness
- History of traumatic brain injury
- History of learning disability
- Genetic variables
- Hormonal factors

Common Cognitive Problems Reported Post-Chemotherapy

- Memory and concentration
- 'Executive' function
 - Short term memory, multi-tasking
- Ability to learn new material /reading comprehension
- Ability to work with numbers

Cognitive Impact of Systemic Chemotherapy

- Wieneke and Deinst (1995)
 - Neuropsychological assessment of 28 breast cancer patients treated with CAF or CMF
 - Assessed cognitive function using formal testing at ~ 6 months following treatment
 - Compared results to population based norms
 - 75% scored below expected levels

Cognitive Function After Adjuvant Chemotherapy

<u>Treatment</u> <u>Arm</u>	N	<u>Cognitive</u> Impairment (%)
Local Therapy	36	9
Standard Dose	36	17
High Dose	34	32

Patient populations:

- 4 cycles FEC
- 4 cycles FEC +STAMP V (cyclophosphamide/thiotepa/carboplatin) with stem cell support
- Surgery +/- radiation
- Cognitive assessment 2 years after completion of treatment

van Dam FSAM, et al. J Natl. Cancer Inst. 90:210, 1998

Adjuvant Breast Cancer Therapy and Cognition

Treatment Arm	n	Cognitive Impairment (%)	Odds Ratio	<i>P</i> -Value
CMF*	39	28		
Controls	34	12	6.4	0.013

- Unaffected by anxiety, depression, fatigue, and time since treatment
- Evaluated a median of 1.9 years after completion of therapy
- No correlation between objective testing and subjective symptoms

* CMF = cyclophosphamide, methotrexate, 5-fluorouracil

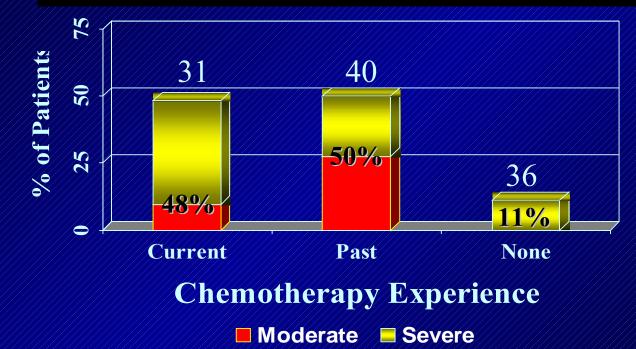
Schagen. Cancer. 1999;85:640.

Patient assessment of cognitive problems

	CMF		control
Problems with concentration	31%	p=0.007	6%
Problems with memory	21%	p=0.022	3%
Problems with language	8%	NS	3%

Percent of patients who gave score of >2 on a 5 point scale

Schagen et al, CANCER 1999


Recovery with Longer Follow-up?

- Additional assessment performed on CMF patients, control patients (and patients who received either FEC or high dose chemotherapy)
- All treatment groups demonstrated improvement in cognitive functioning over time
- Slight deterioration in functioning of control patients

Schagen et al, Annals of Oncology 1387-1397, 2002

Cognitive Impairment in Breast Cancer Patients Receiving Adjuvant Chemotherapy

Assessment: High Sensitivity Cognitive Screen/POMS

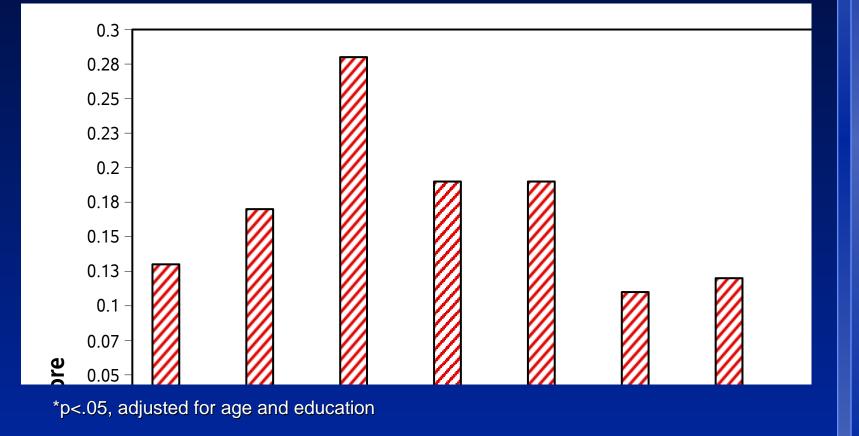
Group A: Presently receiving chemotherapy (CMF, CEF; n=31)

Group B: Completed chemotherapy at least 1 year ago (CMF, CEF; n=40; median time since chemotherapy-2 years)

Group C: Healthy female controls (n=36)

Brezden et al, J Clin Onc, 2000

Dartmouth Long-Term Survivor Study


- Patients with a history of breast cancer or lymphoma
 - Minimum of 5 years post diagnosis
 - Completed therapy, free of disease
 - No neurobehavioral risk factors or psychiatric disease
 - Treatment included
 - Standard dose chemotherapy
 - 35 breast cancer
 - 36 lymphoma
 - Surgery and radiation (not CNS)
 - 35 breast
 - 22 lymphoma

Ahles et al, JCO 2002

Percentage of Survivors Treated with Chemotherapy or Local Therapy Scoring in the Low Neuropsychological Performance Range

No. Impaired	<u>Chemotherapy</u>	Local Therapy	<u>Chi-square Sig</u> .
<u>Domains</u>			
3	50%	23%	p = 0.002
4	39%	14%	p = 0.002
5	24%	5%	p = 0.003

Adjusted z-Transformed Domain Scores for the Chemotherapy vs. Local Therapy Groups

Mean Adjusted Squire Memory Subscale Scores

*p<u><.</u>05, adjusted for age and education

Summary

- No impact of diagnosis
- Significant differences by multivariate analysis controlled for age and education
 - Battery as a whole
 - Verbal memory
 - Psychomotor function
 - % lower quartile neuropsych performance
 - Self reported problems with working memory

What is the Effect of Diagnosis? Wefel

- 84 women enrolled on therapeutic clinical trials evaluated before adjuvant therapy
 - 35% with cognitive impairment BEFORE start of systemic therapy
 - Verbal learning and memory function
 - Affective distress was related to cognitive impairment

Wefel et al, Cancer 2004

Longitudinal Studies: Bender

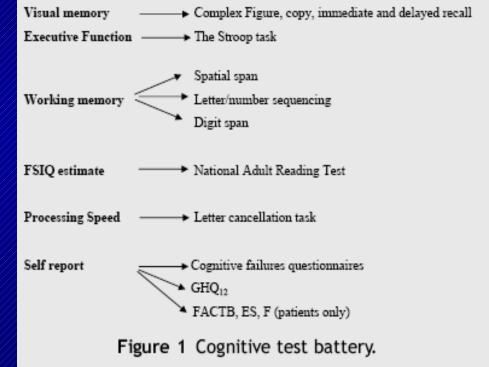
- Three groups evaluated (N=46)
 - Chemotherapy (Group 1, 19)
 - Chemotherapy plus tamoxifen (Group 2, 15)
 - DCIS without tamoxifen (Group 3, 12)
- Three time points
 - After surgery, at end of chemotherapy and one year following end of chemotherapy
 - 24 dropped out before T3
- Results
 - Group 1: Deterioration in verbal working memory
 - Group 2: Deterioration in visual memory, verbal working memory, more memory complaints
 - Group 3: Improvement over time (practice effect)
 - Defects generally subtle

Bender et al, Psycho-oncology 2005

Preliminary Results: Shilling

Baseline, 6 and 18 month evaluation

- 50 chemotherapy patients (plan 100)
- 43 healthy controls (family members, friends)


Data at baseline and 6 months

 Significant group by time interaction on three measures of verbal and working memory

OR for chemotherapy patients 2.25

- Impairment defined as having cognitive decline in 2 or > measures
- No correlation with psychological and quality of life variables
- No correlation between self reported cognitive decline and formal testing

Study ongoing

Shilling et al, Breast 2005

One and Two Year Follow-up of a Prospective Controlled Study: Tchen

- 100 patients with breast cancer receiving adjuvant or neoadjuvant chemotherapy
 - Completed at least 3 courses of chemotherapy
 - − Age ≤ 60
 - Fluent in English
- Matched control by age selected by patient from a neighbor, friend or relative
- Evaluation with High Sensitivity Cognitive Screen (HSCS), mini-mental status exam, others, FACT-B, ES, F, blood tests for endocrine status
- Testing at end of chemotherapy, one and two years later

Tchen, N et al, ASCO 2004

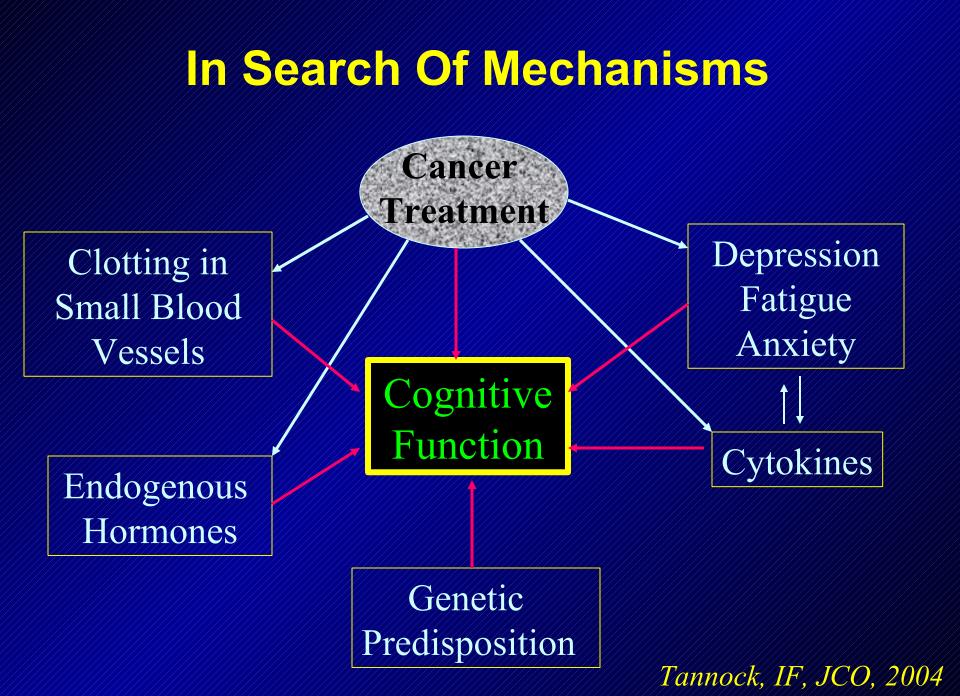
Results

- Median age 48
 - 69% premenopausal at diagnosis
 - -71% anthracyline based chemotherapy
- More fatigue than controls

	Patients		<u>Cor</u>	<u>itrols</u>		
	N	FACT-F	N	FACT-F	P-value	
Baseline	100	31 (22-39)	100	46 (41-49)	<0.0001	
Year 1	85	43 (37-48)	79	47 (43-50)	0.0002	
Year 2	81	45 (39-49)	80	48 (43-50)	0.012	

Results (2)

- More menopausal symptoms at baseline, year 1 and year 2
- Quality of life improved over time
- Cognitive function improved over time as defined by moderate/severe dysfunction by HSCS


	<u>Patients</u>		Controls		
	N	Impaired	N	Impaired	P-value
Baseline	100	16%	100	4%	0.0008
Year 1	85	4%	79	2%	0.06
Year 2	81	3%	80	0%	0.09

Conclusions

- There was a strong relationship at all time points between:
 - Fatigue and QOL (p<0.0001)
 - Menopausal symptoms and QOL (p<0.0001)
 - Fatigue and menopausal symptoms (p<0.0001)
- Cognitive dysfunction is temporary in most patients
- Fatigue and menopausal symptoms are important side effects of chemotherapy that improve but do not resolve over two years

Summary of Data

- Standard-dose adjuvant breast cancer chemotherapy appears to impair cognitive function in a subset of women
 - There is very little prospective data with flawed controls
 - In the majority of patients, effects appear to resolve over time
- Current testing methods generally do not reflect patient reported symptoms
- Longitudinal assessments will be critical to
 - Determine impact and duration of cognitive function
 - Assess populations at risk
 - Define role of baseline defects in cognition
- Mechanisms?

Mechanisms

- Possible mechanisms of direct chemotherapy induced cognitive change
 - Direct toxic impact on the brain
 - Byproducts of cytotoxic agents, e.g., free radicals?
 - Injury response: Chemotherapy stimulates central release of neurotoxic cytokines
 - Immune response: Autoimmune mechanisms

Hormones and Cognitive Functioning

- Reduced estrogen and testosterone levels have been associated with cognitive decline
- Chemotherapy and hormonal levels may interact to increase cognitive decline in cancer survivors
- Little data to support an impact of menopause or tamoxifen on cognitive function
- Rapid changes associated with treatment may play a contributory role

Genetic Factors

- APOE -ɛ4 allele has been implicated in cognitive decline in patients with
 - Cardiac surgery
 - Head trauma
 - Increased age
 - In normals and with associated chronic illnesses
- Is APOE-ɛ4 a risk factor for cognitive deficits secondary to chemotherapy?

Z-Transformed Domain Means by APOE Status: Long-term Follow-up Study at Dartmouth in 80 Breast and Lymphoma Survivors

Domains	APOE E4 Positive	APOE E4 Negative	p value*
	Mean (SD)	Mean (SD)	
Visual Memory	-0.30 (1.12)	0.04 (0.81)	0.03
Spatial Ability	-0.38 (1.17)	-0.13 (0.97)	0.05
Psychomotor Funct	ion -0.24 (0.80)	0.05 (0.66)	0.08
Verbal Ability	0.10 (0.68)	-0.16 (0.86)	0.83
Verbal Learning	-0.20 (1.16)	-0.03 (0.94)	0.48
Verbal Memory	0.21 (0.90)	-0.15 (0.89)	0.21
Motor Functioning	-0.01 (0.72)	-0.11 (0.73)	0.93
Attention CR	-0.14 (0.97)	-0.01 (0.87)	0.33
Attention RT	-0.19 (0.69)	-0.05 (0.67)	0.30

*Controlling for age, gender, education, diagnosis, and WRAT-R (reading subset)

Ahles et al, Psycho-oncology, 2003

Potential Mechanisms

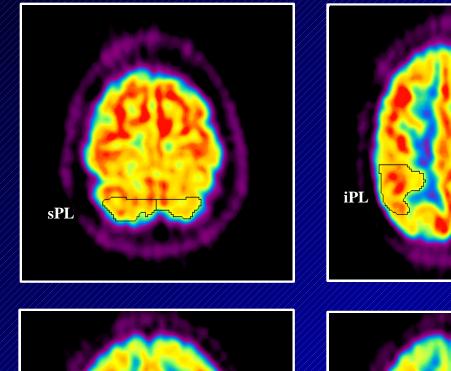
- Reduction in microvascular or neuronal repair processes associated with the APOE ε4 allele
- Pre-existing morphologic differences (e.g., smaller hippocampal volume) associated with the APOE -ɛ4 allele

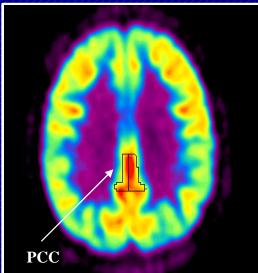

Methods of Testing

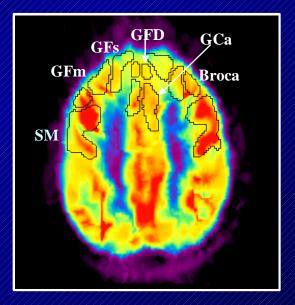
- Formal neuropsychiatric testing evaluates common domains
 - Verbal Ability, verbal learning and memory (speed of information processing), visual memory, spatial functioning, psychomotor functioning, attention/concentration, executive (frontal) functioning motor function and coordination
 - QOL self-report measures include global quality of life, depression, anxiety, memory and fatigue
- Requires expertise to administer test, ~ 2 hours testing time

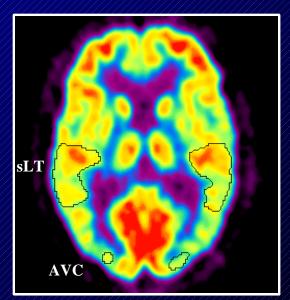
Methods of Testing (2)

- Newer computerized testing methods
 - Easy to administer, short testing time
 - Provide global rather than detailed results
- Imaging
 - MRI/PET scans to evaluate changes in baseline blood flow and metabolism
 - Measure changes in real time with cognitive tests/mental status exam
 - Costly and time consuming


PET Scan Protocol


Abnormal regional brain activity was identified in adjuvant chemotherapytreated breast cancer survivors

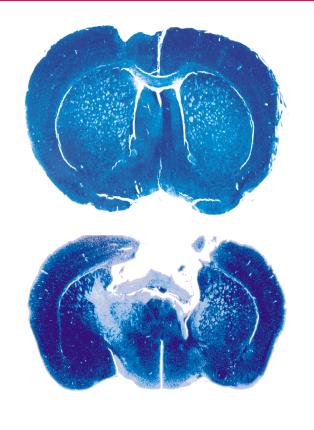

- Resting hypometabolism in frontal cortex: superior frontal gyrus of the dorsolateral prefrontal cortex, L/R Broca's areas (9% below normal, p < 0.001 for each).
- Activation pattern during recall task in L/R Broca's area was abnormal.
- Resting hypometabolism in lentiform nucleus for tamoxifen + chemo, but not chemo-only, patients (-10%, p<0.001).
- Severity of regional brain abnormalities correlated significantly with severity of neurocognitive impairment.


Regions of Interest on Superior Brain Normal Template

WA

Interventions

- Possible pharmacologic interventions
 - Erythropoietin
 - Methylphenidate (Ritalin)
 - Statins HMG-CoA reductase inhibitors to preserve blod flow, decrease inflammatory cytokines, reduce oxidative stress
 - Modafinil wakefulness and cognitive enhancer
 - Antidepresssants
 - Treat insomnia
 - Herbal remedies
 - Gingko Biloba and Ginseng no standardized formulation
- Cognitive rehabilitation (R. Ferguson, Darmouth)
 - Structured programs
 - Exercise, memory tasks, puzzles, avoid fatigue

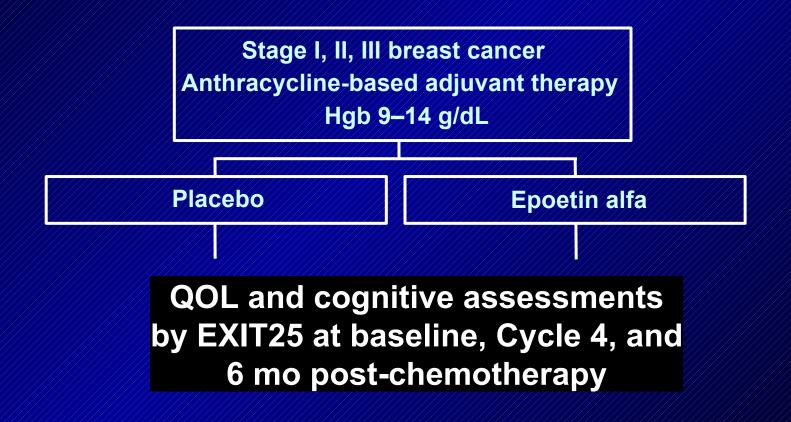

CNS Effects of r-HuEPO Proposed Mechanism of Neuroprotection

- Peripherally administered r-HuEPO crosses the blood-brain barrier (BBB)
- Exogenous r-HuEPO then interacts with brain EPO receptors
- Receptor binding induces a gene expression program, which inhibits apoptosis and also modulates neuronal excitability

CNS Effects of r-HuEPO

- r-HuEPO administered systemically protects brain from a variety of insults
 - Focal ischemia (stroke)
 - Blunt trauma
 - Excitotoxins
 - EAE
- Improved cognitive function is observed in animals treated with r-HuEPO

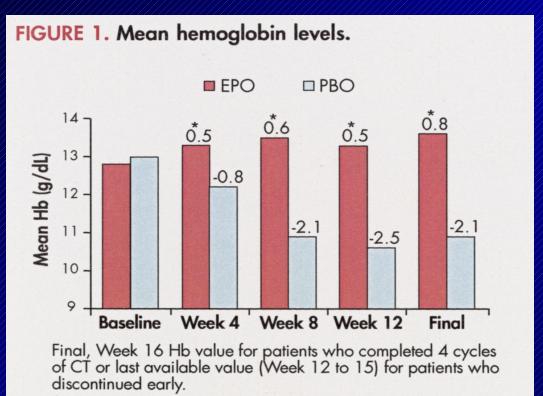
Cortical Trauma Model



r-HuEPO 24 hours before trauma

saline

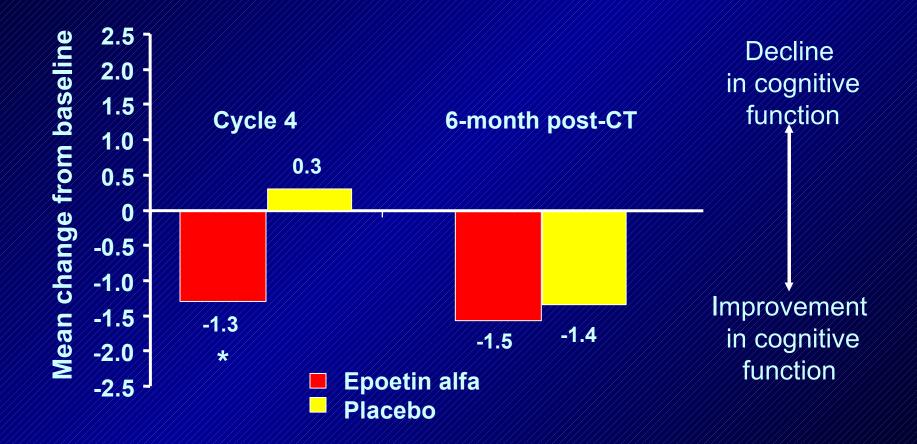
Brines et al. *Proc Natl Acad Sci USA*. 2000;97:10526-10531.


Treatment Schema: Adjuvant Breast/Cognition Protocol

QOL, quality of life.

O'Shaughnessy, et al. Breast Cancer Res Treat. 2002.

Epoetin alfa and CT Breast Cancer: Hb Results



*P<.001 for difference between groups at each postbaseline week. Numbers above each bar represent mean changes from baseline.

Hb levels
 significantly
 improved with
 EPO treatment
 compared to
 placebo

O'Shaughnessy et al. Proc Am Soc Clin Oncol. 2002;21. Abstract 1449

Mean Change From Baseline to Cycle 4 in EXIT25

O'Shaughnessy, et al. Breast Cancer Res Treat. 2002.

Effects of r-HuEPO

- Potential toxicities
 - Thrombosis risk at higher than normal hemoglobin levels
 - Hemoglobin levels must be monitored and controlled
- Effects on outcome?
 - Two randomized trials suggested a negative effect of erythropoietin on recurrence and survival
 - Subsequent studies showed no impact

Leyland-Jones, Lancet 2003; Hencke et al, Lancet 2003

Patient Controlled Methylphenidate

- 31 patients with advanced cancer
 - Fatigue as measured by 0-10 scale
 - Treated with Methylphenidate 5 mg every 2 hrs as needed for 7 days.
 - Symptoms assessed daily by scale and FACT-F
- Significant improvements in
 - Fatigue (p<.001)
 - Overall well-being (p<.001), Functional well-being (p<.001), Physical well-being (p<.001)
- Most patients took 3 or more doses per day
- All chose to continue methylphenidate > 7d
- No serious side effects

Bruera et al, JCO 2003

Future Directions

- Large scale prospective studies are needed
 ?Role of tamoxifen vs aromatase inhibitors
- Study of factors that increase vulnerability to cognitive decline
- Use of imaging techniques and development of animal models
- Examination of the temporal patterns of cognitive decline and recovery
- Important issue to discuss with patients when considering adjuvant chemotherapy, particularly when the benefit of treatment is borderline

Ongoing Longitudinal Studies

• Dartmouth

- Breast cancer and lymphoma
- Assessing APOE ε4 as a possible risk factor
- Longitudinal functional MRI scanning
- Shilling
- Component of adjuvant hormonal trials
- Interventions ongoing or planned
 - Methylphenidate (randomized)
 - Behavioral modification and cognitive rehabilitation
 - Erythropoietin